Задание № 45 — ГДЗ по геометрии 10 класс (Атанасян)

✅ Задание № 45
Прямая а параллельна стороне BC параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что а и CD — скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен: а) 50°; б) 121°.
Прямая а параллельна стороне BC параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что а и CD — скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен: а) 50°; б) 121°.
Вариант ответа 1 из 3
+1
К сожалению, ты уже отдал голос за это, или другое решение :(
Вариант ответа 3 из 3
-1
К сожалению, ты уже отдал голос за это, или другое решение :(
ABCD- параллелограмм, а параллельна ВС. Значит, а параллельна АД. ВС и СД не параллельны и пересекаются в точке с. Значит а и СД— скрещивающиеся прямые. И угол между ними будет равен в одном случае (если угол ВСД равен 50°) 50°, а в другом 121°, если угол ВСД равен 121°. (Вс параллельно а, СД -секущая)
✅ Тут можно быстро переключиться на другой номер из этого параграфа.
2. Взаимное расположение прямых в пространстве. Угол между двумя прямыми
Похожие решебники