Задание № 327 — ГДЗ по геометрии 7 класс (Атанасян)

ГДЗ по геометрии 7 класс (Атанасян)
Задание № 327
Даны шесть точек. Известно, что прямая, проходящая через любые две точки, содержит по крайней мере еще одну из данных точек. Докажите, что все эти точки лежат на одной прямой.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

geometriya-7-klass-atanasyan-327-zadanie

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Из условия задачи следует, что наши шесть точек можно разбить на две тройки: пусть прямая 1 проходит через точки О1, O2 и О3, а прямая 2 проходит через точки O4, O5 и O6. Докажем, что прямые 1 и 2 совпадают: предположим противное. Тогда через точки О3 и О6 проходит прямая 3, и, поскольку две несовпадающие прямые могут пересекаться на плоскости только в одной точке, то точки O1, O2, O4 и O5 не принадлежат прямой 3, что противоречит условию, следовательно прямые 1 и 2 совпадают, и все шесть точек лежат на одной прямой.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Дополнительные задачи



✅ Ждем твоих предложений, пожеланий и добрых слов)

Похожие решебники