Задание № 301 — ГДЗ по геометрии 10 класс (Атанасян)

OnlineGDZ
Видео решение задания Геометрия 10 класс (Атанасян)
Задание № 301
Двугранный угол при боковом ребре правильной треугольной пирамиды DABC равен 120°. Расстояние от вершины B до бокового ребра DA равно 16 см. Найдите апофему пирамиды.


Вариант ответа 1 из 2
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 2
К сожалению, ты уже отдал голос за это, или другое решение :(

В основании правильной треугольной пирамиды лежит равносторонний треугольник, а боковые грани являются равными равнобедренными треугольниками.
Проведем BK⊥DA. Тогда ВК = 16.
ΔВКА = ΔСКА по двум сторонам и углу между ними (ВА = СА, АК - общая, ∠КАВ = ∠КАС как углы равных треугольников) ⇒∠СКА = ∠ВКА = 90° ⇒
∠ВКС = 120° - линейный угол двугранного угла при боковом ребре пирамиды.
ΔВКС: по теореме косинусов:
CB² = CK² + BK² - 2CK·BK·cos120°
CB² = 2·256 + 2·256·1/2 = 3·256
CB = 16√3 - сторона основания
ΔКАВ: sin∠KAB = KB/AB = 16/(16√3) = 1/√3
Проведем DH⊥BC. DH - высота и медиана ⇒СН = СВ/2 = 8√3
∠DCB = ∠DAB ⇒
sin∠DCB = 1/√3
cos∠DCB =√(1 - sin²∠DCB) = √(1 - 1/3) = √(2/3)
tg∠DCB =1/√3 : √(2/3) = 1/√2
ΔDCH:
tg∠DCH = DH/CH
DH = CH · tg∠DCH = 8√3 ·1/√2 = 4√6

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Дополнительные задачи

Похожие решебники