Задание № 286 — ГДЗ по геометрии 10 класс (Атанасян)

OnlineGDZ
Видео решение задания Геометрия 10 класс (Атанасян)
Задание № 286
В правильном тетраэдре h — высота, m — ребро, а n — расстояние между центрами его граней. Выразите: а) m через h; б) n через m.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники. 
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС. 
а)Выразить m через h.
АО - радиус описанной окружности. 
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды. 
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в  плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ  с k=1/2.  
n=ab/2=1/2•(2/3)m
n=m/3. 

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

§ 3. Правильные многогранники

Похожие решебники