Задание № 256 — ГДЗ по геометрии 7 класс (Атанасян)

OnlineGDZ
ГДЗ по геометрии 7 класс (Атанасян)
Задание № 256
Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетов равна 26,4 см. Найдите гипотенузу треугольника.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Геометрия-7-класс-Атанасян-256-задание

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Пусть x - гипотенуза.
Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
Ответ: 17,6 см

или так

Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
х+2х = 26,4
3х= 26,4
х = 8,8
1. 8,8 * 2 = 17,6 см
Ответ 17,6 см.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Глава IV. Соотношение между сторонами и углами треугольника
§ 3. Прямоугольные треугольники



✅ Ждем твоих предложений, пожеланий и добрых слов)

Похожие решебники