Задание № 245 — ГДЗ по геометрии 7 класс (Атанасян)

OnlineGDZ
ГДЗ по геометрии 7 класс (Атанасян)
Задание № 245
Через точку пересечения биссектрис ВВ1 и СС1 треугольника ABC проведена прямая, параллельная прямой ВС и пересекающая стороны AB и АС соответственно в точках М и N. Докажите, что MN =ВМ + CN.


Вариант ответа 1 из 2
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 2
К сожалению, ты уже отдал голос за это, или другое решение :(

Сделаем рисунок.
Обозначим точку пересечения биссектрис буквой О.
Обратим внимание на две параллельные прямые ВС и МN
Они пересекаются:

1) Секущей ВВ1.
При этом образуются равные накрестлежащие углы СВО и ВОМ по свойству параллельных прямых и секущей.
Но ∠ СВО=∠ВОМ по условию задачи.
Отсюда  ᐃВМО - равнобедренный. МО=МВ

2) Секущей СС1.
При этом образуются равные накрестлежащие углы ВСО и СОN по свойству параллельных прямых и секущей.
Но ∠ОСN=∠ВОС по условию задачи.
ᐃ ОСN - равнобедренный и ОN=NС
Из этого следует, что МО+ОN=ВМ+СN,
иначе МN=ВМ+СN, что и требовалось доказать.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Глава IV. Соотношение между сторонами и углами треугольника
§ 2. Соотношения между сторонами и углами треугольника

Похожие решебники