Задание № 211 — ГДЗ по геометрии 7 класс (Атанасян)

ГДЗ по геометрии 7 класс (Атанасян)
Задание № 211
Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисы накрест лежащих углов параллельны; б) биссектрисы односторонних углов перпендикулярны.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

геометрия-7-класс-Атанасян-211-задание

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

а) Пусть АВ \\ CD и лучи BE и CF — биссектрисы накрест лежащих углов ABC и BCD соответственно (рис. 132, а). Углы ABC и BCD — накрест лежащие углы при пересечении параллельных прямых АВ и CD секущей ВС, поэтому ZABC = ZBCD. Лучи BE и CF — биссектрисы углов ABC и BCD, поэтому Z1 = Z2. Равные углы 1 и 2 являются накрест лежащими углами при пересечении прямых BE и CF секущей ВС, следовательно, BE \\ CF, т. е. биссектрисы накрест лежащих углов параллельны.
б) Пусть АВ || CD, лучи АЕ и CF — биссектрисы соответственных углов МАВ и ACD (рис. 132, б), а АК — продолжение луча АЕ. Так как АЕ — биссектриса угла МАВ, то луч АК — биссектриса вертикального с ним угла В\АС. Поэтому АЕ || CF (см. задачу а).
в) Пусть лучи АЕ и СЕ — биссектрисы односторонних углов при пересечении параллельных прямых АВ и CD секущей АС (рис. 132, в). Поскольку ABAC + A ACD = 180° (эти углы односторонние), то
A+2=BAC/2+ACD/2=90
Следовательно, треугольник АЕС — прямоугольный с прямым углом Е. Но это и означает, что биссектрисы односторонних углов перпендикулярны.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Глава III. Параллельные прямые
§ 2. Аксиома параллельных прямых



✅ Ждем твоих предложений, пожеланий и добрых слов)

Похожие решебники