Задание № 176 — ГДЗ по геометрии 7 класс (Атанасян)

ГДЗ по геометрии 7 класс (Атанасян)
Задание № 176
Докажите, что треугольники ABC и А1В1С1 равны, если АВ=А1В1, АС=А1С1, АМ=А1М1, где AM и А1М1 — медианы треугольников.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Геометрия-7-класс-Атанасян-176-задание

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.

AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны (см. задачу 114). Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

Глава ІІ. Треугольники
§ 4. Задачи на построение



✅ Ждем твоих предложений, пожеланий и добрых слов)

Похожие решебники