Задание № 141 — ГДЗ по геометрии 10 класс (Атанасян)

OnlineGDZ
Видео решение задания Геометрия 10 класс (Атанасян)
✅ Задание № 141
Один конец данного отрезка лежит в плоскости а, a другой находится от нее на расстоянии 6 см. Найдите расстояние от середины данного отрезка до плоскости а.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение :(

Расстояние от точки до плоскости - длина перпендикуляра, проведенного из точки к плоскости.
Проведем ВН⊥α.
ВН = 6 см.
Пусть С - середина отрезка АВ.
СК⊥α.
Два перпендикуляра, проведенные к одной плоскости, параллельны, значит прямые ВН и СК задают плоскость, в которой лежат две точки отрезка АВ, значит и весь отрезок лежит в этой плоскости.
Итак, в ΔАВН: С - середина АВ и СК║ВН, значит СК - средняя линия ΔАВН по признаку.
СК = ВН/2 = 3 см

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

2. Перпендикуляр и наклонные. Угол между прямой и плоскостью

Похожие решебники