МЕНЮ

Задание № 39 — ГДЗ по геометрии 7 класс (Атанасян)

ГДЗ по геометрии 7 класс (Атанасян)
Задание № 39
Отрезок, длина которого равна а, разделен произвольной точкой на два отрезка. Найдите расстояние между серединами этих отрезков.


Вариант ответа 1 из 3
К сожалению, ты уже отдал голос за это, или другое решение 🙁

Вариант ответа 2 из 3
К сожалению, ты уже отдал голос за это, или другое решение 🙁

Геометрия-7-класс-Атанасян-39-залание

Вариант ответа 3 из 3
К сожалению, ты уже отдал голос за это, или другое решение 🙁

Пусть A и B - конечные точки исходного отрезка. Пусть С - точка деления этого отрезка.
AC+CB=AB
Пусть K - середина отрезка AC, тогда
AK=KC
M - середина отрезка CB, тогда
CM=MB
Нам надо найти KM:
KM=KC+CM
Сложим все части отрезка:
AB=AK+KC+CM+MB
Так как AK=KC, а CM=MB, имеем:
AB=2*KC+2*CM
AB=2*(KC+CM)
KC+CM=AB/2
Так как AB=a, получаем
KC+CM=a/2
KM=a/2
Ответ: расстояние между серединами получившихся отрезков a/2.

✅ Тут можно быстро переключиться на другой номер из этого параграфа.

§ 4. Измерение отрезков

✅ Ждем твоих предложений, пожеланий и добрых слов)

Похожие решебники